Reason MU320 Extended Version

Analog and digital, fast and accurate: Process Interface Unit for Digital Substations

MU320E is the Process Interface Unit (PIU) with analog and binary interfaces for full switchyard modelling, control and digitization using IEC 61850 standards and protocols such as Sampled Values (SV) and GOOSE.

The MU320E unlocks the full value of a completely digital substation, acting as the I/O interface to every bay IED, particularly for protective relays and bay control units. Limiting the field wiring just up to the MU320E reduces project complexity by reducing cabling and physical connections. Bay IEDs can use data from redundant MU320E units, increasing system availability. Bay IEDs can also be quickly replaced as no field wiring is involved. The MU320E has the additional benefit of improving CT performance and cost through a lower connected burden and a reduction in the number of CT cores required for an application.

Key Benefits

- Compact form factor supports field installation options into circuit breakers cabinets, marshalling kiosks and metal-clad switchgear.
- 6 slots for I/O cards allows multiple applications. Apply as Merging Unit, Remote I/O device or PIU. Right size and point count for all type of application.
- High Speed High Break output contact option to directly operate into Circuit Breakers and Switchgears.
- Card slots for 2 CT/VT analog boards supports application on breaker-and-a-half lines, dual distribution feeders, and combination protection and metering installations.
- Optional metering accuracy CT/VT analog board for revenue metering and power quality applications.
- 2 SV streams possible (one per CT/VT analog board). Each stream can be protection (80 s/c) or power quality (256 s/c) SV streams.
- Full integration into the digital substation through 2 Ethernet ports, support for Parallel Redundancy Protocol (PRP) high availability networks, and IEEE 1588 Precision Time Protocol.
- Full IEC 61850 Edition 2, including support for Test mode and Simulation. Multiple logical devices to integrate multiple circuit breakers and disconnectors in one MU320E.

Applications

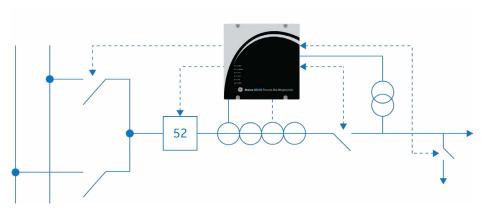
- Process Interface Unit for full bay digitization.
- Standalone Merging Unit for conventional instrument transformers.
- Remote I/O (RIO) device for interfacing to primary equipment such as circuit breakers and disconnectors.
- Bay unit for GE B30X distributed bus bar protection system.
- Revenue accuracy and power quality metering applications.
- Breaker-and-a-half line terminals using a single PIU device.
- Two feeders in a single PIU device.

High I/O Density & Flexibility

- MU320E stands as a ½ 19" and low depth device, perfect to be placed in enclosure kiosks in the yard.
- Up to 6 flexible slots for Analog and Binary I/O.
- Up to 16 Analog Inputs 8CT/8VT.
- Several combination options up to 96 Binary Inputs or up 48 Binary outputs.
- A single box for Metering and Protection purposes.

Switchyard Interface

- IEC61850 dedicated data modelling for Circuit Breakers, Circuit Switches and Current and Voltage Transformers.
- Simple interface to connect Binary I/O and GOOSE points to Switchyard devices data model.


IEC 61850 Edition 2 & Test mode

- Operation modes On, Test, Blocked, Test/Blocked and Off
- Operation modes independently configurable per Logical Device (LD)


Fase-of-Use

- Clean, simple and functional IED Configurator Tool (ICT)
- Software configurable binary input voltage level
- Intuitive IEC 61113-3 based logic.

REMOTE I/O

SEPARATE

Flexibility

By integrating binary inputs, outputs and analogue connections into one box, the MU320E offers a cost-effective solution for a multitude of bay configurations. Up to two buses and two lines may be monitored per box with a flexible configuration of up to 96 binary inputs or 48 binary outputs

Future Proof and Interoperable

The MU320E complies with the IEC 61850-9-2 Light Edition (LE) implementation guideline, which guarantees its interoperability. This was tested and approved by the global testing and certification company TUV SUD according to the Implementation Guideline for Digital Interfaces to Instrument Transformers.

Furthermore, measurements of each CT/VT set may be broadcasted in protection and measurement profiles, allowing multiple protection, automation and control applications. Covering the gap between conventional and digital substations serves to future-proof substation technologies.

Test Modes

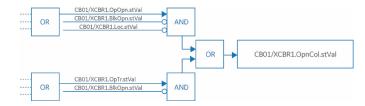
IEC 61850 edition 2 provides standard mechanisms for testing purposes, reducing commissioning complexity and allowing new bay installations without affecting substation operation.

MU320E is fully compatible to IEC 61850 ed. 2, allowing users to independently configure mode and behavior of each logical devices allowing then to operate as: On, Test, Blocked, Test/Blocked and Off.

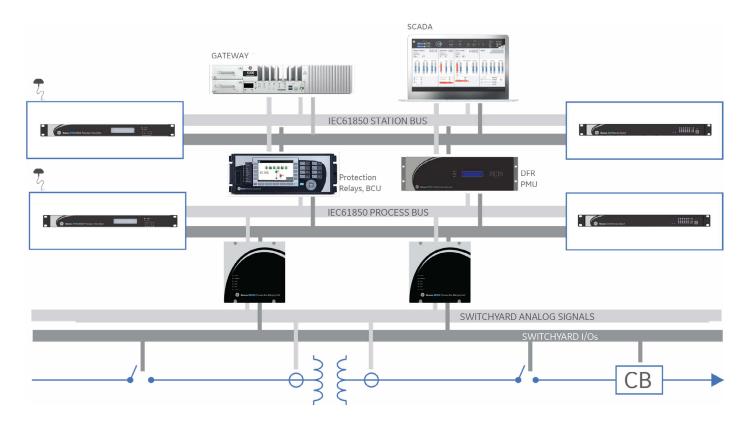
A safer substation

Transmitting the instrument transformers' measurements digitally through optical fibers eliminates the risk of inadvertent mishandling of the current and voltage circuits and makes the relay room a safer work environment, eliminating hazards and reducing the risk of personnel injury.

Reduce the engineering effort and cost


The use of Process Bus with the MU320E drastically reduces the need for trenches, ducts, glands, cable trays and copper hardwiring, as the information is exchanged among IEDs using fiber optic cables and ethernet switches.

Fewer cables to manage also means reduced engineering complexity as extensive wiring schematics are replaced by standardized version-controlled configuration files. Future reconfigurations are automatically documented by the IED configuration tool.


Switchyard modelling and digitization

The Process Interface Unit MU320E stands as the device responsible to be the physical to digital interface for primary equipment, including the possibility to represent them through the IEC 61850-7-4 data model, in a way that the MU320E becomes the extension of the CT/VT, circuit breakers and disconnectors through the logical nodes TCTR, TVTR, XCBR and XSWI.

Through simple user interface IEC 61113-3 based logic it is possible to connect MU320E physical and digital inputs to its data model and digital outputs, allowing the true Switchyard digitization.

Example application of IEC 61850 Architecture

Improved Reliability

Power systems applications are mission critical systems, where the industry standard is to offer inherent redundancy in the schemes applied. The Reason MU320E provides unsurpassed reliability, as a flexible, redundant solution. The Ethernet connections support the IEC standard Parallel Redundancy Protocol (PRP), where a redundant star-connected topology allows zero-time - or bumpless – recovery. The shallow case design makes it easy to deploy MU320E in main and backup, or dual main applications, each connected to different cores of the line CTs and individual protection.

MU320 is the first of its class to manage both PRP redundancy and IEEE 1588 PTP operating together in the substation architecture. Profit from a single redundant network for higher reliability in communication and synchronization simultaneously.

Functions and IEC61850 data modeling

One of the main advances brought by IEC 61850 is the way it allows the IEDs to standardize their model through elements such as *Logical Nodes* and *Control Blocks*. The main functions that the MU320E supports in this regard are:

LN	DESCRIPTION
LTMS	Time synchronization supervision
LTIM	Local time supervision
LCCH	Physical ethernet communication channel supervision
LGOS	GOOSE subscription supervision
GGIO	Generic Process I/O covering all binary I/O available
SIMG	Gas Insulation medium supervision*
SIML	Liquid Insulation medium supervision*
XCBR	Circuit Breaker modeling – Supervision and operation
XSWI	Circuit Switch modeling – Supervision and control
TCTR	Current Transformer modelling – Samples available through Sampled Values
TVTR	Voltage Transformer modelling – Samples available through Sampled Values

TECHNICAL SPECIFICATION

Power Supply 110-250 Vdc, 110- 240 Vac

	·
Operating nominal voltage	110-250 V dc, 110- 240 V ac
Frequency	50/60 Hz ± 3Hz
Operating voltage range	88 - 300 V dc, 88 - 264 V ac
Power Consumption	MAX 20 VA
Connector	3 pin: positive (phase), negative (neutral) and ground

Optical Irig-B Input

Signal	IRIG-B004
Wavelength	820 nm
Fiber type	Multimode 62.5 / 125 μm
C	ST
Connector	- 24 dBm

Serial Port

Serial Fore			
Interface	RS232 and RS485		
Use	Device configuration and software upgrade		
Bit Rate	115200 bps		
Connector	DB9 (female), standard DTE		

In Service Contact

Dry contact relay, normally closed
250 V (AC and DC)
5 A
300 (AC and DC)
15 A, 4 sec
40W Resistive, 25 W/VA L/R = 50ms
< 5 ms
~30mA @12V [360mW]
1000V rms
30A

Analog Acquisition

Resolution	16 bits
Acquisition rate	80 and 256 ppc
Group delay	< 1.1ms
Bandwidth	1 k Hz

Current Input

Characteristic	Standard Input			Standard Input			High accuracy Inputs		
Nominal Current (In)	5 A		1 A			1 A			
Nominal frequency	50/60Hz		50/60Hz			50/60Hz			
	Range	Error	Phase Error	Range	Error	Phase Error	Range	Error	Phase Error
	0.05ln 0.2ln	< 2.5% rd	<+-90'(+-1.5°)	0.05ln 0.2ln	< 2.5% rd	<+-90'(+-1.5°)	0.05ln 0.2ln	< 0.6% rd	<+-15'(+-0.3°)
Accuracy	0.2ln 0.8ln	< ± 0.75% rd	< ± 45' (± 0.75°)	0.2ln 0.8ln	< ± 0.75% rd	< ± 45' (± 0.75°)	0.2ln 0.8ln	< ± 0.2% rd	< ± 8' (± 0.15°)
	0.8ln 4ln	< ± 0.5% rd	< ± 30' (± 0.5°)	0.8ln 4ln	< ± 0.5% rd	< ± 30' (± 0.5°)	0.8ln 4ln	< ± 0.1% rd	< ± 30' (± 0.1°)
	4ln 40ln	< ± 1% rd	< ± 60' (± 1.0°)	4ln 40ln	< ± 1% rd	< ± 60' (± 1.0°)	4ln 40ln	< ± 0.4% rd	< ± 60' (± 0.2°)
Burden In	< 0.05VA		< 0.01 VA			< 0.02 VA			
Continuous overload	20A (4 x In)			4A (4 x In)		10 A (10 x In)			
AC current thermal withstand 1 s (Ith rms)	200A (40 x In)		40A (40x In)		20 A (20 x In)				
Insulation	> 2.2 kVrms		> 2.2 kVrms		> 2,2 kVrms				
* rd – Indicate errors of	reading values								

Voltage Inputs

		115 V 10 – 230V			
		10 - 230V			
			10 - 230V		
	50/60Hz				
Amplitude Error	Phase Error	Range	Amplitude Error	Phase Error	
< ± 0.5% rd	< ± 20' (± 0.35°)	0.08Vn 2Vn	< ± 0.1% rd	< ± 5' (± 0.1°)	
< ± 1.0% rd	< ± 60' (± 1.0°)				
< 0.1VA			< 0.1VA		
230 V (2 x Vn)			230 V (2 x Vn)		
460 V (4 x Vn)			460 V (4 x Vn)		
> 3,5 kV			> 3,5 kV		
30 V (2 x Vn) 60 V (4 x Vn)			460 V (4 x Vn)	460 V (4 x Vn)	

Synchronization

60068-2-1:2013 Tested as per

IEC 60068-2-2:2013

Syncinionization			
Accuracy	< 1µs		
Drift when not locked	±0.016PPM (1.44 miliseconds/day)		
Max Holdover	60s		
Environment Con	ditions		
Operating temperature (continuous)	-40 °C (-40 °F) +55°C (+131°F)		
Tested as per IEC	40°C (40°E)		

-40°C (-40°F)

+85°C (+185°F)

Relative humidity 0 ... 95 %, noncondensing

Enclosure Protection IEC 60529		
Front flush mounted with panel	IP40	
Rear and sides	IP10	

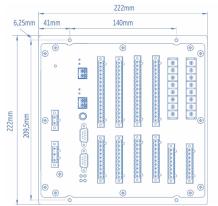
Optical Ethernet Ports

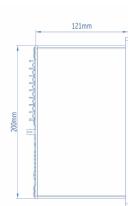
Interface	100BASE-FX
Bitrate	100 Mbps
Wavelength	1300 nm
Connector	LC
Fiber type	multimode 62.5 / 125 μm
Emission power	-20 dBm
Sensitivity	-32 dBm
Maximum applicable power	-14 dBm

Binary Output

Description	Dry contact relay. Form-C or Form-A		
Max. Switching Voltage	300 Vdc		
Maximum continuous current	5 A		
Make and short time carry current	30A, 0.2s		
Breaking Capacity	40 W Resistive, 25 W/VA L/R = 50ms		
Operation time	< 5 ms		
Dropout time	< 15 ms		
Burden	Per energized output relay: ~30mA @12V [360mW]		
Protection device across contacts	MOV (Metal Oxide Varistor) Rated @ 250Vac/320Vdc		

High Speed High Break Binary Output


Description	using IGBT technology	
Max. switching voltage	300 Vdc	
Maximum continuous current	10A	
Maximum voltage	300 (AC and DC)	
Make and short time carry current	30A, 0.2s	
Breaking Capacity	Maximum 10A @ L/R = 40ms	
Operation time	< 0.2 ms	
Dropout time	< 25 ms	
Burden	Per energized output relay: ~30mA @12V [360mW]	
Protection device across contacts	MOV (Metal Oxide Varistor)	
Max Number of operation	10000	


Binary Input

Nominal Voltage	24 V	48 V	125 V	250 V
Level Low	08 V	10 V	40 V	75 V
Level High	17 V	19 V	85 V	160 V
Burden	< 0.05 W	< 0.2 W	< 0.25 W	< 0.5 W
Continuous Overload	80 V	100 V	240 V	340 V

Dimensions and Weight

Height	222 mm / 8.7 in (5 U)
Width	222 mm / 8.7 in (½ 19")
Depth	121 mm / 4.7 in
Weight	< 3.5 kg (< 7.72 lb)

Type Test

EMC tests were performed according to IEC 60255-26 referring to the following			
IEC 61000-4-2:2008	6kV contact / 8kV air		
IEC 61000-4-3:2006	10 V/m		
IEC 61000-4-4:2012	4 kV @ 5KHz		
IEC 61000-4-5:2005	Differential mode: 4kV Common mode: 2kV		
IEC 61000-4-6:2008	10V		
IEC 61000-4-8:2009	30A/m contínuos		
IEC 61000-4-11:2004	AC dips (residual%) 0% - 1/1 cycles (50/60Hz) 40% - 50/60 cycles (50/60Hz) 70% - 25/30 cycles (50/60Hz) AC interrupt (residual%) 0% - 250/300 cycles (50/60Hz)		

	DC dips (residual%)
	0% - 10ms
IEC 61000-4-29:2000	40% - 200ms 70% - 500ms
	DC interrupt (residual%)
	0% - 5s
IEC 61000-4-16:1998	Differential mode: 150 Vrms. Common mode: 300V r.m.s. Freq: 16.7 Hz, 50 Hz or 60 Hz
IEC 61000-4-17:1999	Test level: 15 % of rated dc. value Test frequency: 100/120Hz, sinusoidal waveform
IEC 61000-4-18:2006	Voltage oscillation frequency: 1MHz Differential mode: 1kV peak voltage; Common mode 2,5kV peak voltage
	Shut-down ramp: 60s
Gradual Startup	Power off: 5min.
Graduar Startup	Start-up ramp: 60s
CISPR11:2009 (below	Radiated emission Limits:
1GHz)	30 to 230 MHz - 50dB (μ V/m) quasi peak at 3m
10112/	230 to 1000 MHz - 57dB (μV/m) quasi peak at 3m
CISPR22:2008 (above	Radiated emission Limits:
1GHz)	1 to 3 GHz – 56 dB (µV/m) average; 76 dB (µV/m) peak at 3 m
	3 to 6 GHz – 60 dB (μ V/m) average; 80 dB (μ V/m) peak at 3 m
CICDD22-2000	Conducted emission Limits:
CISPR22:2008	0.15 to 0.50 MHz - 79dB (μV) quasi peak; 66dB (μV) average 0.5 to 30 MHz - 73dB (μV) quasi peak; 60dB (μV) average
Safety tests	0.5 to 50 Minz - 750B (µV) quasi peak, oodb (µV) average
Safety	IEC 60255-27
	Impulse – 5kV
IEC 60255-5	Dielectric withstand – 2.2 kVrms
	Insulation resistance > $100M\Omega$ @ $500 Vdc$
Environmental tests	
IEC 60068-2-1	-40°C, 16 hours (Cold operational)
IEC 60068-2-1	-40°C, 16 hours (Cold storage)
IEC 60068-2-2	+85°C, 16 hours (Dry heat operational)
IEC 60068-2-2	+85°C, 16 hours (Dry heat storage)
	+25°C ± 3 °C-97% -2% +3% RH
IEC 60068-2-30	+55°C ±2°C -93% ±3% RH
	6 of 24 hours (12h + 12h) cycles
IEC 60068-2-14	-40°C to 55°C / 9 hours / 2 cycles (Change of temperature)
IEC 60068-2-78	+40°C ±2°C -93% ±3% RH -10 days
IEC 60255-21-1	Vibration Response and Endurance Class 2
IEC 60255-21-2	Shock Response and Endurance Class 1
IEC 60255-21-2	Bump Class 1
IEC 60255-21-3	Seismic Class 2

MU320E is a product RoHS 3 Compliant

MU320 Ordering

Model Type MU32	20 * * * * *	* * * *	X 04 S	E MU320 Integrated Merging Unit - Extented Version
Slot A - Power Supply	3			110-250 Vdc / 110-240 Vac
Slot B - Hardware Options	L			Two duplex LC-type connector 100BASE-FX Ethernet interfaces
Slot C - Binary I/O	В3			16 x 24V/48V/125V/250V binary inputs
	B4			6 x 24V/48V/125V/250V binary inputs and 8 x binary outputs
	B5			6 x 24V/48V/125V/250V binary inputs and 4 x Form C + 2 x NO binary output:
	B6			6 x 24/48/125/250 V binary inputs and 8 x High Speed Form A binary outputs
Slot D - Binary I/O	В3			16 x 24V/48V/125V/250V binary inputs
	B4			6 x 24V/48V/125V/250V binary inputs and 8 x binary outputs
	B5			6 x 24V/48V/125V/250V binary inputs and 4 x Form C + 2 x NO binary output:
	В6			6 x 24/48/125/250 V binary inputs and 8 x High Speed Form A binary outputs
Slot E – Binary I/OSlot 1	В3			16 x 24V/48V/125V/250V binary inputs
	В4			6 x 24V/48V/125V/250V binary inputs and 8 x binary outputs
	B5			6 x 24V/48V/125V/250V binary inputs and 4 x Form C + 2 x NO binary output:
	В6			6 x 24/48/125/250 V binary inputs and 8 x High Speed Form A binary outputs
Slot F – Binary I/OSlot 2		B3		16 x 24V/48V/125V/250V binary inputs
		B4		6 x 24V/48V/125V/250V binary inputs and 8 x binary outputs
		B5		6 x 24V/48V/125V/250V binary inputs and 4 x Form C + 2 x NO binary output:
		B6		6 x 24/48/125/250 V binary inputs and 8 x High Speed Form A binary outputs
Slot G – Flexible I/O options		В3		16 x 24V/48V/125V/250V binary inputs
		B4		6 x 24V/48V/125V/250V binary inputs and 8 x binary outputs
		B5		6 x 24V/48V/125V/250V binary inputs and 4 x Form C + 2 x NO binary output:
		B6		6 x 24/48/125/250 V binary inputs and 8 x High Speed Form A binary outputs
		P1		4 x VT 115V and 4 x CT 1 A RMS protection analog inputs
		P5		4 x VT 115V and 4 x CT 5 A RMS protection analog inputs
		xx		Not Installed
Slot H – Flexible I/O options		В3		16 x 24V/48V/125V/250V binary inputs
		B4		6 x 24V/48V/125V/250V binary inputs and 8 x binary outputs
		B5		6 x 24V/48V/125V/250V binary inputs and 4 x Form C + 2 x NO binary output
		B6		6 x 24/48/125/250 V binary inputs and 8 x High Speed Form A binary outputs
		P1		4 x VT 115V and 4 x CT 1 A RMS protection analog inputs
		P5		4 x VT 115V and 4 x CT 5 A RMS protection analog inputs
		xx		Not Installed
Functions and Application		A		Standard Integrated Merging Unit
••		В		PRP redundant Integrated Merging Unit
Reserved			X	Not Used
Firmware Version			04	Latest available firmware - 04
Coating			S	Standard Conformal Coating
			3	

GEGridSolutions.com

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council. NIST is a registered trademark of the National Institute of Standards and Technology.

 $\operatorname{\sf GE}$, the $\operatorname{\sf GE}$ monogram and Reason are trademarks of General Electric Company.

GE reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

